PRACTICE TEST

Write in a neat and organized fashion. You should use a pencil. For an exercise to be complete there needs to be a detailed solution to the problem. Do not just write down an answer. No proof, no credit given!

1. Answer each question:	(30 points)
a) What is the standard form of a linear equation in two variables?	
c) What is the slope-intercept form of a line?	
d) What is the point-slope form of a line?	
e) When are two lines parallel?	
f) When are two lines perpendicular?	
g) What is the definition of the slope?	
h) What is the standard form of a quadratic equation?	
i) What is the quadratic formula?	
j) Write the following statement mathematically and describe what	it means (the definition of function).

y is a function of *x*

k) Complete each special product:

 $a^3 - b^3 =$ _____

- 2. Do the following operations and graph the solution set:
- a) [−3,6] U[−2,4]

3. Do the following:

a) solve the inequalities;

- b) graph the solution set on the number line;
- c) use interval notation for the solution set.

a) $2 < 3x - 4 \le 7$

b) $-3(3x+4) \ge 21$

4. Graph the following equations on a rectangular coordinate system by the intercepts method. Label the points and axes.

(10 points)

(8 points)

a) Complete each ordered pair so that it is a solution of the given equation:

6. Graph the following equations on the same coordinate system. Label the points, the lines, and the axes.

(8 points)

7. Do the following:

(8 points)

a) Write an equation for the line that passes through the given point and has the given slope: (2,3), m= 5.

b) put your equation into slope-intercept form;

c) put your equation in standard form.

8. Solve the following systems of two linear equations and two variables using the substitution method or the addition method. (10 points)

a) $\begin{cases} 2x + y = 1 \\ 5x - y = 20 \end{cases}$	b) $\begin{cases} -5a = 15b + 1\\ a + 3b = -5 \end{cases}$
$\int J x - y = 20$	

9. Graph the following linear inequality in two variables: $y \ge 3x - 1$. Show clearly how you obtain the boundary line and what test point you're using. Label the points, line and axes used.

(8 points)

x	у
0	1
2	3
1	0
3	2
5	4
6	7

a) Is the s	second variable y	a function of the	first variable x ? Ex	plain why or
why not us	ing the definition	of function.		

b) If y is a function of x (y = f(x)), give the domain and the range.

Domain =	Range =
	6

c) Find f(0) and f(4).

f(0) = _____

d) Solve f(x) = 4.

11. Simplify the following expressions. Write the final answer with positive exponents only. (10 points)

f(5)=_____

a)
$$\frac{(xy)^{-3}(xy)^{6}}{(xy)^{-5}}$$

b)
$$\left(\frac{a^2b^3}{a^{-2}b^{-3}}\right)^{-4}$$

12. Do the following operations:

a)
$$\frac{4a}{a^2+3a+2} + \frac{2a-1}{a^2+6a+5}$$

b)
$$\frac{\frac{1}{x+5}}{\frac{4}{x^2-25}}$$

(10 points)

b) $2\sqrt{24} - 5\sqrt{54} + 3\sqrt{20}$	(8 points)
	(18 points)
b) $7m - 14m^2$	
d) $x^2 - 17x + 66$	
h) $50y^2 - 200$	
b) $3k^2 + 4k - 4 = 0$	(10 points)
	b) $7m-14m^2$ d) $x^2-17x+66$ h) $50y^2-200$

16. Solve the following equation by the square root property:

(5 points)

 $(4x-3)^2-9=0$

18. Solve the following equation by completing the square:

 $3a^2 - 9a + 5 = 0$

19. Solve the following equations:

a) $\sqrt{3x-5} = \sqrt{2x+1}$

7

17. Solve the following equation by the quadratic formula:

$$2x^2 + 2x = 5$$

(5 points)

(5 points)

(21 points)

b) $\sqrt{5x+11} = x+3$

+2x = 5

c)
$$\frac{5x}{14x+3} = \frac{1}{x}$$

d) $\frac{3x}{x^2+5x+6} = \frac{5x}{x^2+2x-3} - \frac{2}{x^2+x-2}$
 \therefore
20. Solve each formula for the specified variable:
a) $ax+by = c$ for y.
(8 points)
b) $V = \frac{1}{2}pr^2h$ for h.

21. Rationalize each denominator:

a)
$$\frac{1}{4+\sqrt{15}}$$

3'

b) $\frac{2\sqrt{3}}{\sqrt{6}}$

(8 points)

22. A boat can travel 20 miles against the current in the same time that it can go 60 miles with the current. The current is 4 mph. Find the speed of the boat in still water. (9 points)

23. Mark and Luisa operate a small laundry. Luisa, working alone, can clean a day's laundry in 9 hours. Mark can lean a day's laundry in 8 hours. How long would it take them if they work together? (9 points)