In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		
In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Section	8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14}\cdot\sqrt{2}-\sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{3} + \sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Sectior	n 8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14} \cdot \sqrt{2} - \sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		

In class work: Solve each problem.

Section 8.2

Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:	2) Simplify each radical. Assume all variables
$\sqrt{90}$	represent nonnegative real numbers.
$\sqrt{125}$	$\sqrt{m^2}$
$\sqrt{128}$	$\sqrt{36z^2}$
$\frac{\sqrt{200}}{\sqrt{2}}$	$\sqrt{18x^8}$
$\frac{\sqrt{200}}{\sqrt{2}}$ $\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$	$\sqrt{z^5}$
$\frac{30\sqrt{10}}{5\sqrt{2}}$	$\sqrt{81m^4n^2}$
∛40	$\sqrt[3]{p^3}$
∜243	$\sqrt[3]{15t^5}$
$\sqrt[3]{-\frac{216}{125}}$	$\sqrt[3]{216m^3n^6}$

Section 8.3 Adding and Subtracting Radicals

The process of changing the denominator from a radical (irrational number) to a rational number is called <u>rationalizing the denominator</u>.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.

5) Simplify.

- 2. The radicand has no fractions.
- 3. No denominator contains a radical.

4) Rationalize each denominator.

$\frac{6}{\sqrt{5}}$	$\sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}}$
$\frac{12\sqrt{10}}{8\sqrt{3}}$	$\sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}$
$\frac{6}{\sqrt{200}}$	$\sqrt{\frac{16}{m}}$
$\frac{\sqrt{5}}{\sqrt{10}}$	$\frac{\sqrt{7 x^3}}{\sqrt{y}}$
$\frac{6}{\sqrt{5}}$ $\frac{12\sqrt{10}}{8\sqrt{3}}$ $\frac{6}{\sqrt{200}}$ $\frac{\sqrt{5}}{\sqrt{10}}$ $\frac{\sqrt{10}}{\sqrt[3]{\frac{1}{2}}}$ $\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	$\sqrt{\frac{2x^2z^4}{3y}}$
$\frac{\sqrt[3]{7m}}{\sqrt[3]{36n}}$	

Sectior	n 8.5

 $\frac{3}{25x}$

More Simplifying and Operations with Radicals

6) Simplify.		7) Rationalize.
$\sqrt{5}(\sqrt{3}-\sqrt{7})$	$\sqrt[3]{4}(\sqrt[3]{2}-3)$	$\frac{1}{2+\sqrt{5}}$
$3\sqrt{14} \cdot \sqrt{2} - \sqrt{28}$	$\left(5\sqrt{7}-2\sqrt{3}\right)^2$	$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\left(2\sqrt{6}+3\right)\left(3\sqrt{6}+7\right)$	$\left(\sqrt{5}+\sqrt{30}\right)\left(\sqrt{6}+\sqrt{3}\right)$	$\frac{\sqrt{6}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}$
$\left(\sqrt{6}+1\right)^2$	$(\sqrt[3]{4} + \sqrt[3]{2})(\sqrt[3]{16} - \sqrt[3]{8} + \sqrt[3]{4})$	$\frac{\sqrt{108}}{3+3\sqrt{3}}$
$(5a-\sqrt{2})(5a+\sqrt{2})$		