REVIEW TEST 2 – Section 3.6, Chapters 5, 6, 7 (7.1 – 7.5)

To prepare for the test, study the following :

Section 3.6 – Introduction to Functions

- Homework Section 3.6 All homework problems
- All examples done in class.
- More practice:

1) Which of the following tables define the second variable as a function of the first variable? Explain why or why not.

x	t
-1	2
0	9
1	-2
0	-3
-1	5

Adjusted gross	Tax
income (I)	bracket
	(T)
0 - 2479	0%
2480 - 3669	11%
3670 - 4749	12%
4750 - 7009	14%
7010 - 9169	15%
9170 - 11,649	16%
11,650 – 13,919	18%

Temperature (T)	Humidity (h)
Jan.1 34° F	42%
Jan.2 36° F	44%
Jan 3 35° F	47%
Jan 4 29° F	50%
Jan5 31° F	52%
Jan.6 35° F	51%
Jan.7 34° F	49%

2) Which of the following tables and diagrams define the second variable as a function of the first variable? Explain why or why not.

i) If the relation is a function, give the domain and the range.ii) Find f(B).iii) Solve f(x)=1

x	у
-23	12
-12	120
120	1
0	0

i) If y is a function of x, give the domain and the range.
ii) Find f(0) and f(120).
iii) Solve f(x)=12
iv)

3) Which of the following equations define y as a function of x. Explain why or why not using the definition of function: a) y=5x+2 b) $y=x^2$ c) $x=y^2$

4) a) What is the definition of a function?b) Give an example of a function, using a table, a diagram, or an equation.c) What is the domain of a function (the definition) ? In particular, what is the domain of your function?

5) Which of the graphs represent *y* as a function of *x*? Explain why or why not. Give domain and range for all graphs.

Chapter 5 – Exponents and Polynomials

- Homework Chapter 5 All homework problems.
- All examples done in class
- Quiz #2

• More practice:

1) Simplify each expression. Write the final answer using only positive exponents.

a)
$$\left(\frac{2a^{-2}b}{3ab^{-3}}\right)^3$$
 b) $\frac{a^0 + b^0}{2(a+b)^0}$ c) $\frac{(-3p^4q^{-5})^{-3}(2p^{-4}q^3)^{-2}}{4p^5q^{-2}}$ d) $\left(\frac{2x^{-4}y}{x^5y^5}\right)^{-3}\left(\frac{4x^{-2}y^0}{x^7y^2}\right)^2$ e) $\frac{(-2x^2y^3)^2(3x^4y^5)^3}{(2x^2)^6(3y^8)}$

2) Simplify – use special products whenever appropriate:

a)
$$(x+1)^3$$
 b) $(2a-1)^3$ c) $(x+2)^4$ d) $\left(\frac{1}{2}x^2 + \frac{2}{5}x - 1\right)\left(4x^3 - \frac{5}{3}x^2 - x + \frac{1}{2}\right)$ e) $\left(\frac{2}{3}x + \frac{5}{6}y\right)^2$
f) $\left(a^2b - ab^2\right)^2$ g) $\left(\frac{3}{2}a - \frac{8}{9}b^2\right)^2$ h) $\left(\frac{10}{11}x - 1\right)\left(\frac{10}{11}x + 1\right)$ i) $\left(3p + \frac{5}{4}q\right)\left(2p - \frac{5}{3}q\right)$

3) Let $P(x) = -x^5 + 3x^4 - \frac{1}{2}x^2 - 10$, $Q(x) = (x^4 - 3x - 1)(-x^2 - 5)$ two polynomials.

a) How many terms does each polynomial have?;
b) What is the degree of each polynomial?;
c) What is the constant term of each?;
d) Find P(0) and Q(-1);
e) Find their sum and product;
f) Find P(x)-Q(x);
g) Divide Q by P;
h) Find P(2x).

Chapter 6 – Factoring and Applications

- Homework Chapter 6 All homework problems
- Handout Chapter 6 All exercises
- All examples done in class.
- Quiz #2
- More practice:

1) Solve each equation by factoring:

a)
$$x^2 - 9 = 0$$

b) $x^2 - 6x - 7 = 0$
c) $y^2 + 2y = 0$
e) $x^3 + 4x^2 + 3x = 0$
f) $3x^2 - 21x = -30$
g) $10x^2 + 43x = 9$
h) $(2x + 3)(3x - 5) = -10$
j) $(3x - 5)(4x + 1) = 24$
l) $(3x + 1)^2 - 9x^2 = 31$

Chapter 7 – Rational expressions

- Homework Chapter 7 7.1 7.5 All homework problems.
- All examples done in class.
- More practice: odd exercises from the textbook