Math 61 Summer 2008

TEST #1 @ 180 points

Write in a neat and organized fashion. Use a pencil. Use a straightedge and compass for your drawings. Write all the answers and proofs on separate paper.

1)

٠

a) Write the inverse, converse, and contrapositive of the following statement:

"A baby sneezes when it gets pepper in its nose."

 b) - Write the <u>inverse</u>, converse, and contrapositive of the following statement;
<u>Classify each statement (the given, inverse, converse, and contrapositive) as true or false</u>. If true, state the definition, postulate, or theorem your conclusion is based on. If false, say why or draw a counterexample.

" If D is the midpoint of \overline{AB} , then $\overline{AD} \cong \overline{DB}$."

2) Study each argument carefully to decide whether or not it is valid.

- a) If you walk under a coconut tree, you will probably be hit on the head. If you visit Hawaii, then you will walk under coconut trees. Therefore, if you visit Hawaii, you will probably be hit on the head.
- b) If you are using this book, then you must be able to read.If you are a geometry student, you must be able to read.Therefore, if you are using this book, you are a geometry students.

3) a) Write the negation of $P \lor Q$; that is, complete the statement: $\sim (P \lor Q) \equiv$

b) Then prove the above law using a truth table. Explain in words why the table shows that the two statements are equivalent.

4) <u>Draw a figure and write the hypothesis and conclusion</u> for each of the following. Make sure that you write the hypothesis and conclusion using math notation pertinent to your drawing. DO NOT PROVE.

a) The median to the base of an isosceles triangle bisects the vertex angle.

- b) Supplements of equal angles are equal.
- c) Vertical angles are congruent.
- d) Two angles are congruent if they are both right angles.

- Write the congruences given by the indicated measures or marks – that is, what sides and angles are congruent from the given figure.

- State whether from the given congruences <u>only</u> you may conclude that triangles I and II are congruent. If congruent, write what case of congruency applies.

2

7) Answer true or false:

a) The hypotenuse is the side opposite one of the acute angles in a right triangle.

b) A right isosceles triangle has two right angles.

c) If three angles of one triangle are congruent with three angles of a second triangle, then the two triangles are congruent.

d) Triangles can be proved congruent using SSA.

e) Corresponding parts of congruent triangles are congruent.

f) An exterior angle of a triangle is the supplement of one of the interior angles of the triangle.

8) Complete the following Postulates or Theorems. DO NOT PROVE.

a) Two points determine .

b) Given two points in a plane, the line containing these points

c) Segment – Addition Postulate (you may need to make a drawing first)

6)

Given $\overrightarrow{JK} \perp \overrightarrow{SM}$ $m \angle EJK = 105^{\circ}$

Find angles 1 through 5. Informal proof, But justify your answers.

10) Prove the following theorem. Make sure you state the hypothesis and conclusion of the theorem and make a drawing. Use math notation pertinent to your drawing.

Two equal supplementary angles are right angles.

11) Draw a figure and write the hypothesis and conclusion using math notation pertinent to your drawing. Mark the figure and write a formal proof.

If the bisector of an angle of a triangle is perpendicular to the opposite side, then the triangle is isosceles.

12) Given: $\angle B$, $\angle E$ right angles \overline{AD} bisects \overline{BE} Prove: $\overline{AB} \cong \overline{DE}$ (formal proof) B

Extra credit on next page ©

Extra Credit

1) 2 points

Does any conclusion follow from the following pair of premises?

If you can play the banjo while standing on your head, then you have practiced the banjo very hard. If you can't play "Oh Susannah," then you haven't practiced the banjo very hard.

2) 3 points

Can you rearrange the following statements in logical order? If so, what theorem do they prove?

- · If I have trouble with a proof, it is not easy.
- 2. If I study a proof without getting dizzy, it is one I understand.
- 3. If a proof is not arranged in a logical order, I can't understand it.
- 4. A proof is giving me trouble if I get dizzy while studying it.
- 5. This proof is not arranged in a logical order.

3) 2 points

What can you say about

a) the supplement of an acute angle?

b) the complement fo an acute angle?

- c) the complement of an obtuse angle?
- d) the supplement of a right angle?

4) 3 points

Make drawings of three coplanar rays having the same end-point such that they form:

a) three acute angles; mark the angles.

b) two acute angles and one obtuse angle; mark the angles..

c) one acute angle and two obtuse angles; mark the angles..

d) three obtuse angles; mark the angles..

e) only two angles, one of which is acute and the other obtuse; mark the angles.

TETT 1- SO LUDIONS

(1a) if a boby gets pepper in its note, then it meeter. (P→Q) CONVERSE = FALSE "If AD = DB, then D is the midpoint of AB' INVERSE If a baby doosn't get fie previous example: ADB (NP->NQ) peper in its note, then isorcelles with AD = DB, it doesn't sneeze. but D not the mid point CONVERSE if a baby snee ges, then of AB. it gets repair in the note. $(Q \rightarrow P)$ CONTRAPOSINVE if a baby doen't CONTRAPOSIDIVE = TRUE (~a ~ ~P) swepe, then it "If AD & DB, then D not doesn't get pupper the unidpoint of AB in the mose (définition of midpoint 15) Giren statement, TRUE (2) (a) VACID (de finition of mid point) INVACIO INVERTE = FALLE " if D not the mid point of AB, (B) ~ (PVQ) = ~PA~Q PQ/N(PVQ) ~P/M~Q then AD Z DB." For example, & DAB isouceles 7 | F F ${\mathcal T}$ F T T F Ŧ T 71 7 T D = midpoint AB T F F T T Ŧ FI AO ≥ BD The two statements see equivalent because they have identical toute volues

-d-C 4 Z q Gimn (hypothesis) 1 ond <2 = vertical augles Prove (conclusion) Given (hypo thesis): </2<2 ABC-isosceles with base BC AM-median, MEBC (d) Prove (conclusion): Given (hypothesis) AM - 615 tor & A <A, < B = oght angles Prove (con dusion) (6) LAZLB 2 Giren (hypothesis): $(6) (a) \overline{AD} \cong DC$ <A = <C sm<1= m<2 <1,<3= tupplementory <2,<4= supplementary BD = BD not congruent (b) Ej = Mc Prove (condusion) Sj ~ MK m<3 = m< 4 $z_j \cong \langle M$ consment, SAS

-3- $m < 5 = 90^{\circ} - m < 1$ (7) a) Falte = 90° - 15° = 75° [ssands] rete 6) Folse ' compilementory) c) Falte (<3 and c5 ore vertical augles) m < 3 = m < 5· d) False = 750 e) True F) Tme (10) (8) a) Tuo points détermine a line. 6) Given tuo points ui a - A B plane, the line containing Given: < ABD, < DBC = supplementary these points is alto ui MLABD = MCOBC Prove: < ABD, < DBC-n'sht x's the plane. c B Proof if AB is a line segment Rea sons Statements and C is a point on AB, 1. given 1. < ABD, < DBC= Supplin. 2. def. supplm. K's then AC+CB=AB. 2. m(ABD+m< DBC=180 3. griven 3. M < ABD = M < DBC 4. Substitution (9) m<2=90° (JK I SM) 4. m(AB) + m(AB) =(2,3) = 180° 5. Simpli tying m<1= m< Ejk- m<2 5. 2 M < ABD = 180° 6. • / : prop. rf = $6. m(AB) = 90^{\circ}$ = 105° - 90° 7. substitution T. m < DBC = 90°= 150 8. def. oshtts (3,6) 8 LABD and m < 4 = m < 1(<) and <4 ore vertical (6,7) < DBC are = 15° augles) n'sht t's Q.E.D.

-4-(12) Provb (η) Statements Reasons 1. LB, <E-night 1. given 2. oll n'sht t's ≌ $a < B \cong < E$ 3. given 3. AD bisech BE 4. def. Segment bisector 4. BC = CE 5. ((z) above 5. △ ACB S<B=<E Gimn: DABC 2 (4) above AM - bisector LA $\Delta DUE \ \overline{BC} \cong \overline{CE}$ (vertical &'s AM L BC, M+BC <A&B`=<DCE 6. $\triangle ACB \cong \triangle DCE | 6. ASA$ Prove: AABC = isodales 7. AB = DE 7. composed Q.E.D. parts of = d's (CPCTC) Plan: Well show that AB = AC. by chowing & ABMZ DACM (ASA) EXTRA CREDIT Proof Statements Reasons () Let P: "You can play banjo while standing on your head" Q: "you have produced the 1. given $I_{I} \triangle ABC$ 2. given 2. AM L BC 3. def 1 lines 3. < 3 2 < 4 (1 iff adjacent $<math>*'s \cong)$ banjo very hard." 7. Jef. angle bivector you can't ploy "Oh Sersonnah" 4. AM - GNELAX A 5. < 1 2 < 2 the given statements are: 6. (15) above 6. △ ABM (<)=<2 A P→Q
A which is
R→ ~Q which is
A → ~Q which is
A → ~Q
A which is
P→N
A → N
A
A → N
A
A → N
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A reflexive pop. of = A ACM AM = AM (3) above (<3 = <4 7. ASA So, the enclusion is P->NR 7. DABME DACK P. CPCTC There pre, if you can play boujs 8. AB = AC 9. DABC-isosules 9. def. 1500C. A

While standing on your besd, then you can Oplay (3) (a) obtuse "Oh USusannah acute not possible (2)n'sht d #1. "if I have trouble with a proof, it is not easy." 4 #2. is equivalent to "IJ don't understand a proof, a then I don't study unithout getting dizzy." #3." If a poof is not a monged (6) ui a logical order, J can (t muchestand it " # 4. " if I get difty while studying a proof, Then the poof is giving me trouble. C 1 5. this proof is not anouged in a logical occur. The logical order is: #5, #3, #2, #4, #1. The theorem proved is "A proof not orronged ui a logical vocler is not easy."