REVIEW TEST 2 – Section 3.3 & Chapters 4, 5, 6

Optional @ 10 points towards Test 2 – Due Tuesday

Solve all textbook exercises listed on this handout.

SECTION 3.3 - **Textbook** page 200: #7, 9, 17, 19, 23, 29, 41

CHAPTER 4

1) Textbook: Section 4.1 - # 31 – 61odd , 83, 84, 88

2) Solve the following inequalities; graph the solution set; write the solution set in interval notation.

a)
$$-\frac{2}{3}(2x+\frac{3}{2}) \ge 14$$
; b) $-\frac{2}{5} < \frac{x-4}{3} \le 4$; c) $\frac{1}{2}x-3 > 2x+3(x-\frac{1}{3})$;
d) $2(x+2) \ge \frac{1}{5} + 2x$ e) $\frac{2x+3}{3} + \frac{3x-4}{2} > \frac{x-2}{2}$

3) Solve the following:

a)
$$\begin{vmatrix} 3x + \frac{1}{2} \end{vmatrix} = \frac{5}{3},$$
 b) $\begin{vmatrix} x - \frac{1}{4} \end{vmatrix} = \begin{vmatrix} x + 2 \end{vmatrix},$ c) $\begin{vmatrix} 2x + \frac{4}{7} \end{vmatrix} + 1 = 2,$ d) $\begin{vmatrix} 2x + 1 \end{vmatrix} < -2;$ i) $3 \begin{vmatrix} 2x + 5 \end{vmatrix} > 9$
e) $\begin{vmatrix} \frac{3}{5}x - 2 \end{vmatrix} - \frac{1}{2} \ge 4 + \frac{1}{2},$ f) $\begin{vmatrix} x - 1 \end{vmatrix} + 4 \le 11,$ g) $\begin{vmatrix} x \end{vmatrix} + 7 \ge 7,$ h) $-\begin{vmatrix} 3x + 2 \end{vmatrix} - \frac{1}{2} > 2,$ J) $\begin{vmatrix} \frac{x + 1}{x + 8} \end{vmatrix} = \frac{2}{3}$

4) For what values of k does |x| + k = 0 have:

a) exactly one solution; b) exactly two solutions; c) no solution. Provide an example for each case.

5) **Textbook**: Section 4.4 - # 41, 42, 43, 44, 63

6) Maria is investing in the hotel business. She has bought two hotels and will expand her investment when her total profit from the two hotels is at least \$10,000.

a) Write an inequality to model the problem.

b) Graph the solutions set.

c) What does (-1000, 12,000) mean in the context of the problem?

d) What does (5000, 4000) mean in the context of the problem?

CHAPTER 5 – Handout Chapter 5 (go to www.timetodare.com)

CHAPTER 6 – Rational expressions, Functions, and Equations

Textbook:	Section 6.1: #1 – 15 odd, 17 – 26, 99, 101, 105 – 108, 109 – 112 Section 6.2: # 95 – 97 Section 6.3: # 43 – 49 odd Section 6.4: # 17, 19, 23, 33, 35, 51
	Section 6.6: $\#$ 39 – 50 odd Section 6.7: $\#$ 1 – 13 odd

Recognize the vertical and horizontal asymptotes of a given graph: give the equation of the asymptote and the reasoning.