## Highlights Factoring Polynomials

| <b>Factoring</b> = writing an expression as a product                                                                                                                                                                                                                        | Factor 12: $12 = 6 \cdot 2$                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| <b>Prime factorization</b> = writing an expression as a product of prime factors                                                                                                                                                                                             | The prime factorization of 12: $12 = 2 \cdot 2 \cdot 3$                                              |
|                                                                                                                                                                                                                                                                              | Find the GCF of $8x^2y$ , $12x^3y^2$ , and $60x^2y^3$                                                |
| The Greatest Common<br>Factor (GCF)<br>of a list of terms       =       The GCF of numerical<br>coefficients       •       The GCF of the variable<br>factors         use prime factorization       use prime factorization       •       The GCF of the variable<br>factors | $8x^2y = 2 \cdot 2 \cdot 2 \cdot x^2y$                                                               |
|                                                                                                                                                                                                                                                                              | $12x^{3}y^{2} = 2 \cdot 2 \cdot 3 \cdot x^{3}y^{2}$                                                  |
|                                                                                                                                                                                                                                                                              | $60x^{2}y^{3} = 2 \cdot 2 \cdot 3 \cdot 5 \cdot x^{2}y^{3}$                                          |
|                                                                                                                                                                                                                                                                              | $\mathbf{GCF} = 2 \cdot 2 \cdot x^2 y = 4x^2 y$                                                      |
|                                                                                                                                                                                                                                                                              | Factor: $8x + 20 = 4(2x + 5)$<br>$8x = 2 \cdot 2 \cdot 2 \cdot x$                                    |
| <ul><li>To factor out the GCF:</li><li>Find the GCF of the terms</li></ul>                                                                                                                                                                                                   | $20 = 2 \cdot 2 \cdot 5$                                                                             |
| • Use the distributive property                                                                                                                                                                                                                                              | $GCF = 2 \cdot 2 = 4$<br>Factor: $7(\underline{x+2}) + \underline{y(x+2)} = (x+2)(7+y)$<br>GCF = x+2 |
| To factor by grouping:                                                                                                                                                                                                                                                       | Factor: $10x^2 + 15x - 6xy - 9y =$                                                                   |
| • Step 1: Group the terms into two groups of two terms.                                                                                                                                                                                                                      | Step 1: $(10x^2 + 15x) - (6xy + 9y) =$                                                               |
| <ul> <li>Step 2: Factor out the GCF from each group.</li> <li>Step 3: If there is a common factor, factor it out.</li> <li>Step 4: If not, rearrange the terms and try Steps 1-3 again.</li> </ul>                                                                           | Step 2: $5x(2x+3) - 3y(2x+3) =$<br>Step 3: $(2x+3)(5x-3y)$                                           |

## **Special products. Factoring Square Trinomials and the Difference of Two Squares**

A perfect square = a positive integer that is the square of a natural number. This concept of perfect squares extends to algebraic expressions.

A perfect square trinomial = a trinomial that is the square of some binomial.

Squaring a binomial: *Reverse the concept:* Factoring Perfect Square Trinomials

$$(a+b)^{2} = a^{2} + 2ab + b^{2} \qquad a^{2} + 2ab + b^{2} = (a+b)^{2}$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2} \qquad a^{2} - 2ab + b^{2} = (a-b)^{2}$$

## Difference of squares and cubes; Sum of cubes

$$(a-b)(a+b) = a^{2} - b^{2} \qquad a^{2} - b^{2} = (a-b)(a+b)$$
  

$$(a-b)(a^{2}+ab+b^{2}) = a^{3} - b^{3} \qquad a^{3} - b^{3} = (a-b)(a^{2}+ab+b^{2})$$
  

$$(a+b)(a^{2}-ab+b^{2}) = a^{3} + b^{3} \qquad a^{3} + b^{3} = (a+b)(a^{2}-ab+b^{2})$$

## To recognize a perfect square trinomial:

- Step1: See if there are two terms that are perfect squares:  $a^2$ ,  $b^2$ •
- If no perfect squares, then the trinomial is not a perfect square.
- Step 2: See if the third term can be written as twice the product of a and b: 2ab ٠

Perfect squares:  $1 = 1^2$ ,  $4 = 2^2$ ,  $9 = 3^2$ ,  $16 = 4^2$ ,...

Square each binomial:

$$(x+6)^{2} = x^{2} + 2 \cdot x \cdot 6 + 6^{2} = x^{2} + 12x + 36$$
$$(2x-3)^{2} = (2x)^{2} - 2 \cdot (2x) \cdot 3 + 3^{2} =$$
$$= 4x^{2} - 12x + 9$$

Multiply:

$$(7-x)(7+x) = 7^{2} - x^{2} = 49 - x^{2}$$
$$(2x-1)(2x+1) = (2x)^{2} - 1^{2} = 4x^{2} - 1$$

Factor:  

$$x^{2} + 6x + 9 = x^{2} + 2 \cdot x \cdot 3 + 3^{2} = (x + 3)^{2}$$
  
Step 1:  $x^{2}$  and 9 are perfect squares.  
Step 2:  $6x = 2 \cdot x \cdot 3$ 

Factor:

$$4x^{2} - 12x + 9 = (2x)^{2} - 2 \cdot (2x) \cdot 3 + 3^{2}$$
$$= (2x - 3)^{2}$$
  
Factor:  $x^{2} - 25 = x^{2} - 5^{2} = (x - 5)(x + 5)$ 



| Solving Quadratic Equations by Factoring                                                                                                                                                                               |                                                                                                               |                                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|
| A quadratic equation is an equation that can be written as                                                                                                                                                             | Quadratic<br>Equations                                                                                        | Same equations in standard form                   |  |
| $Ax^{2} + Bx + C = 0, \text{ where } A, B, C \in \mathbb{R}, A \neq 0$                                                                                                                                                 | $x^2 = 36$                                                                                                    | $x^2 - 36 = 0$                                    |  |
| The form $Ax^2 + Bx + C = 0$ is called the <b>standard form.</b>                                                                                                                                                       | $y = -2y^2 + 5$                                                                                               | $2y^2 + y - 5 = 0$                                |  |
| <b>Zero Factor Property</b> If $a, b \in \mathbb{R}$ and $a \cdot b = 0$ , then $a = 0$ or $b = 0$ .                                                                                                                   | If $(x+5)(2x-1)=0$ , then $x+5=0$ or $2x-1=0$                                                                 |                                                   |  |
| To Solve Quadratic Equations by Factoring:                                                                                                                                                                             | Solve: $3x^2 = 13x - 4$                                                                                       |                                                   |  |
| • Step 1: Write the equation in standard form (one side is zero).                                                                                                                                                      | Step 1 – standard form:<br>Step 2 – factor ( see 4.4)                                                         |                                                   |  |
| • <b>Step 2</b> : Factor completely.                                                                                                                                                                                   | Step 3 – zero property: $3x - 1 = 0$ or $x - 4 = 0$<br>Step 4 – solve each linear equation:                   |                                                   |  |
| • Step 3: Set each factor containing a variable equal to zero.<br>(according to the Zero Property)                                                                                                                     |                                                                                                               |                                                   |  |
| • <b>Step 4:</b> Solve the resulting equations.                                                                                                                                                                        |                                                                                                               | $x = \frac{1}{3} \qquad x = 4$                    |  |
| • Step 5: Check solutions in the original equation.                                                                                                                                                                    | Step 5 – check both solutions in the original equation<br>by replacing x with $\frac{1}{2}$ and then x with 4 |                                                   |  |
| Quadratic Equations and Problem                                                                                                                                                                                        | 3                                                                                                             |                                                   |  |
| 1. Understand the problem.                                                                                                                                                                                             | Helpful hints:                                                                                                |                                                   |  |
| - Read and reread it.                                                                                                                                                                                                  | <b>Perimeter</b> ( <b>P</b> ) = the sum of the lengths $(l)$ of all sides.                                    |                                                   |  |
| <ul> <li>Draw a diagram.</li> <li>Choose a variable to represent the unknown.</li> <li>2. Translate the problem into an equation.</li> <li>2. Solve the constiant</li> </ul>                                           | Triangle $\Delta$ $P = l_1 - l_2$                                                                             | $+ l_2 + l_3  A = \frac{base \cdot height}{2}$    |  |
| <ol> <li>Solve the equation.</li> <li>Interpret the results: discard the solutions that do not make sense as solutions of the problem. Check your solution in the stated problem and state your conclusion.</li> </ol> |                                                                                                               | $l \qquad A = l^2 \\ l + 2w \qquad A = l \cdot w$ |  |
|                                                                                                                                                                                                                        | Right Triangle - <b>Pythagorean Theorem:</b>                                                                  |                                                   |  |
|                                                                                                                                                                                                                        | $\left(leg\right)^2 + \left(leg\right)^2 = \left(h\right)^2$                                                  | aypotenuse) <sup>2</sup>                          |  |