Definition A **STATEMENT** is a group of words and symbols that can be classified collectively as true or false.

Exercise #1	Which sentences are statements? If a sentence is a statement, classify it as true or false.				
(1.1 - #1)	a) Where do you live?	not a statement			
	b) $4+7 \neq 5$	statement; true			
	c) Washington was the first U.S president.	statement; true			
		statement; John			

Note: We represent statements by letters such as *P*, *Q*, and *R*.

Definition The **NEGATION** of a given statement *P* makes a claim opposite that of the original statement.

If P is a statement, $\sim P$ (read "not P) indicates its negation.

Exercise #2
(1.1-#3)Give the negation of each statement.a) Christopher Columbus crossed the Atlantic Ocean.
 $\underline{C} \cdot \underline{Columbus} \quad \underline{did} \quad \underline{not} \quad \underline{cross} \quad \underline{the} \quad \underline{Atlantic} \quad \underline{Ocean}.$ b) All jokes are funny.Some jokes are not funnyc) 2+5=7 $2+5 \neq 7$ d) Some dogs can fly.All $\underline{dogs} \quad \underline{cannot} \quad \underline{fly}$ $(\underline{bogs} \quad \underline{cannot} \quad \underline{fly}).$

Definition A **TRUTH TABLE** is a table that provides the truth values of a statement by considering all possible true/false combinations of the statement's components.

Р	~ <i>P</i>		
Т	F	→	If P is true, then $\sim P$ is false.
F	Т		When P is false, $\sim P$ is true.

COMPOUND STATEMENTS

Statements can be combined to form compound statements:

<u>Definition</u>	A CONJUNCTION	is a statement of the form <i>P</i> and <i>Q</i> .
-------------------	---------------	--

$P \wedge Q$

Р	Q	$P \wedge Q$
T	7	\mathcal{T}
T	Ŧ	7
Ŧ	7	Ŧ
7	7	Ŧ

For the conjunction to be true, it is necessary for P to be true and Q to be true.

Exercise #3 (B1,Example 2) Let P="Babe Ruth played baseball" and Q="4 + 3 <5." Classify as true or false:

a) $P \wedge Q$ b) $P \wedge \sim Q$ TAF False TAF TAT True

Definition A DISJUNCTION	is a statement of the form P or Q.
---------------------------------	---

$P \lor Q$

P	Q	$P \lor Q$
T	Г	7
T	Ŧ	au
Ŧ	T	7
Ŧ	Ŧ	Ŧ

A disjunction is false only if P and Q are both false.

17

Example: You can join the Math Club if you have an A average or you are enrolled in a mathematics class.

Exercise #4
(B1,Example 3)Let
$$P$$
="Babe Ruth played baseball" and Q ="4 + 3 <5." Classify as true or false:a) $P \lor Q$ $\overrightarrow{T} \lor \overrightarrow{T}$ b) $P \lor \sim Q$ $\overrightarrow{T} \lor \overrightarrow{T}$ $\overrightarrow{T} \lor \overrightarrow{T}$ $\overrightarrow{T} \lor \overrightarrow{T}$

Exercise #5
(B1 - #3, 4, 7)Statement P is true, Q is true, and R is false. Classify each statement as true or false.a) $P \land Q$ b) $Q \land R$ c) $P \land (Q \lor R)$ $T \land T$ $T \land T$

Ŧ

Definition An IMPLICATION or CONDITIONAL is a statement of the form "If P, then Q."

Note: *P* is called the *antecedent* (or *hypothesis*) Q is called the *consequent* (or *conclusion*)

$$P \rightarrow Q$$

Р	Q	$P \rightarrow Q$
7	7	7
T	F	7
Ŧ	T	7
Ŧ	7	au

The conditional statement makes a promise and fails to satisfy the conditions of this promise only when P is true and Q is false.

Example

Consider the claim, "If you are good, then I'll give you a dollar." The only way the claim is false is when "you are good, but I don't give you the dollar."

CONVERSE . INVERSE. CONTRAPOSITIVE

Lewis Carroll, the author of Alice's Adventures in Wonderland and Through the looking Glass, was a mathematician teacher who wrote stories as a hobby. His books contain many amusing examples of both good and deliberately poor logic. Consider the following conversation held at the Mad Hatter's tea Party.

" Then you should say what you mean,", the March Hare went on.

"I do,", Alice hastily replied; "at least - at least I mean what I say - that's the same thing, you know."

"Not the same thing a bit!" said the Hatter. "Why, you might just as well say that 'I see what I eat' is the same thing as 'I eat what I see'!"

"You might just as well say, "added the March Hare, "that 'I like what I get' is the same as 'I get what I like'!"

"You might just as well say," added the Dormouse, who seemed to be talking in his sleep, "that 'I breathe when I sleep' is the same thing as 'I sleep when I breathe'!"

"It is the same thing with you," said the Hatter, and here the conversation dropped, and the party went silent for a minute.

Carroll is playing here with pairs of related statements and the Hatter, the Hare, and the Dormouse are right: the sentences in each pair do not say the same thing at all.

Conditional statement:

Its CONVERSE

If O, then P.

If P, then Q. (P implies Q)

- The converse of a conditional statement is formed by interchanging its hypothesis and conclusion.
- The converse of a true statement may be false. It is also possible that it may be true, but in either case a statement and its converse do not have the same meaning.

Its INVERSE:

 $P \rightarrow Q$

 $Q \to P$

 $P \rightarrow Q$ If not P, then not O.

The inverse of a conditional statement is formed by denying both its hypothesis and conclusion.

Its CONTRAPOSITIVE:

 $\sim Q \rightarrow \sim P$ If not Q, then not P.

The contrapositive of a conditional statement is formed by interchanging its hypothesis and conclusion and denying both.

Definition Two statements are logically equivalent if their truth values are the same for all possible true/false combinations of their components.

Exercise #10 Write the contrapositive of the given statement and then show, using a truth table, that (B1,Example 5) the conditional statement is logically equivalent to its contrapositive.

" If I am sleeping, I am breathing." Contrapositive: NO -> NP: if Jam not brea Huing, then Jam not sleeping $(P \rightarrow Q) \Leftrightarrow ($ $(\sim Q \rightarrow \sim P)$ ∇P vid '⇒NP $(\mathcal{A},\mathcal{A})$ NQI Q τ 7 7 Ŧ 7 7 7 Ŧ τ 7 $\overline{\mathcal{T}}$ 7 τ 7

Exercise #11 Form a truth table and determine all possible truth values for the given statement. Is the (B1 - #15, 18) given statement a tautology?

Т

DEMORGAN'S LAWS

In the study of logic, DeMorgan's Laws (19th century) are used to describe the negation of the conjunction (\land) and disjunction (\lor).

1. $[\sim (P \land Q)] \leftrightarrow [\sim P \lor \sim Q]$ The negation of a conjunction is the disjunction of negations. 2. $[\sim (P \lor Q)] \leftrightarrow [\sim P \land \sim Q]$ The negation of a disjunction is the conjunction of negations.

Proof of DeMorgan's second lew (B1-#25) We need to drow that [~ (PVQ)] and [~PAND] have identical truth values.

P	Q	912	~ (PVQ)	~P	NR	NPANE)
T	T	7	Ŧ	Ŧ	Ŧ	Ŧ
T	Ŧ	T	T I	Ŧ	+	$\uparrow \mp \land$
Ŧ	T	T	<i>F </i>	1	1	
Ŧ	F	Ŧ	T	1 T	T	NTI

Exercise #12 (B1, #19, 21, 23) Use DeMorgan's Laws to write the negation of the given statement.

Exercise #13 (B1 - #29) Use a truth table to show that $[P \land \sim Q]$ is the negation of $P \to Q$.

$$\begin{array}{c|c} \hline \begin{bmatrix} -(P \rightarrow Q) \end{bmatrix} \leftrightarrow \begin{bmatrix} P \land \sim Q \end{bmatrix} \\ \hline P \land Q & P \rightarrow Q & (P \rightarrow Q) & \nabla Q & P \land N Q \\ \hline T & T & T & T & F & F \\ \hline T & F & F & T & T & T \\ \hline T & F & T & T & T & T \\ \hline T & T & T & T & T & T \\ \hline F & T & T & F & F & F \\ \hline F & F & T & F & F & F \\ \hline F & F & T & F & T & F \\ \hline F & F & T & F & T & F \\ \hline F & F & T & F & T & F \\ \hline F & F & T & F & T & F \\ \hline F & F & T & F & T & F \\ \hline F & F & T & F & T & F \\ \hline F & F & F & T & F & F \\ \hline F & F & F & T & F & F \\ \hline F & F & F & T & F & F \\ \hline F & F & F & T & F & F \\ \hline F & F & F & T & F & F \\ \hline F & F & F & T & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F \\ \hline F & F & F & F & F & F \\ \hline F & F & F & F & F \\ \hline F & F & F & F & F \\ \hline F & F & F & F & F \\ \hline F & F & F & F & F \\ \hline F & F & F & F & F \\ \hline F & F & F & F \\ \hline F & F & F & F \\ \hline F & F & F & F \\ \hline F & F & F & F \\ \hline F & F & F & F \\ \hline F & F & F & F \\ \hline F & F \\ \hline F & F & F \\ \hline F & F \\ \hline F & F & F \\ \hline F &$$

VALID ARGUMENTS

Suppose that during a trial a lawyer claims that, from the evidence presented, the guilty person is obviously color-blind and that everyone on the jury accepts this as true. Then he produces proof that Mr. Black is color-blind. Must the jury conclude that Mr. Black is guilty? Suppose also that it is established that Miss White is not color-blind. Must Miss White be innocent?

Color-blind if a person is quilty, then color-blind he/she is color blind.
Guietz people Hr. Black - We can't tell where Mr. Black belogues, so no Mr. Black belogues, so no conclusion is justified.
Mix White _ Miss White is outside the larger circle, she cannot be inside the sweather one, and so
she is not the quilty person.

Definition An **ARGUMENT** is a set of statements called **premises**, followed by a statement called the **conclusion**. In a **VALID ARGUMENT**, the truth of the premises forces a conclusion that must also be true.

 $1.P \rightarrow Q$ Q LAW OF DETACHMENT Premise 1 2.P_ Premise 2 Conclusion Give the symbolic form and prove the Law of Detachment P] -> Q We need to show that the state ment is a tautologie. ▶Q`)^P 1(P->Q (7->Q) AP)NP -> Q tantologie Ŧ Ŧ Ń Ŧ Ŧ Ŧ F F P $\widetilde{1.P} \rightarrow Q$ Premise 1 ATTENTION !!! INVALID ARGUMENT Premise 2 СP Conclusion

$\begin{array}{c} 1.P \to Q \\ 2.Q \to R \end{array}$	Premise 1 Premise 2
C. $P \rightarrow R$	Conclusion

References

James M. Stakkestad, Introduction to Geometry, Academic Press College Division, 1986 Harold R. Jacobs, Geometry, W.H. Freeman and Company, 1974