Review Test #3 Chapters 3 & 5 (5.4, 5.5, 5.6)

To prepare for the test, study the following exercises:

Handout 4.2	Exercises # 1, 2, 3, 4, 7, 8, 9, 10	
Handout 4.5 & 4.6	Exercises # 2 – 28 even	
Handout 5.6	Example 2, Exercises # 1, 2	
Textbook Section 5.	<u>4</u>	Exercises # 1, 3, 5, 19, 23
Textbook Section 5.	5	Exercises # 9, 17, 21, 31, 35
Textbook Section 5.	<u>6</u>	Exercises # 71, 73

1) Find the domain of each function:

a)
$$f(x) = \log(12 - 4x)$$
; b) $g(x) = \ln(x^2 - 25)$; c) $h(x) = \log_2 \frac{3 - 4x}{x + 2}$

2) Graph $f(x) = -\log_3(x-2) + 1$. What is the domain, range, exact intercepts, asymptote.

3) Simplify: $\log(x^2 - 16) - 3[\log(x+4) + 2\log x]$.

4) Suppose $\ln x = t$. Write the following expression in terms of t:

$$\frac{(\ln x)^3 - \ln(x^4)}{\left(\ln\frac{x}{e^2}\right)\left(\ln(xe^2)\right)}$$

5)
$$f(x) = \ln(x + \sqrt{x^2 + 1})$$
. Find $f^{-1}(x)$.

6) a) Graph $f(x) = 3^{x-1} - 2$. Mention: domain, range, exact intercepts, asymptote.

- b) Is *f* increasing or decreasing?
- c) Does *f* have an inverse? Explain.
- d) Find $f^{-1}(x)$. What is the domain and the range of f^{-1} ?
- e) Explain how you can obtain the graph of f^{-1} from the graph of f.

Answers: (1) a)
$$(-\infty, 3)$$
; b) $(-\infty, -5) \cup (5, \infty)$; c) $\left(-2 \cdot \frac{3}{4}\right)$; (3) $\log \frac{x-4}{(x+4)^2 x^6}$; (4) t; (5) $f^{-1}(x) = \frac{e^{2x}-1}{2e^x}$
(6) $x - \bigcap : (1 + \log_3 2, 0)$; $y - \bigcap : \left(0, -\frac{5}{3}\right)$

Optional @ 12 points towards Test #3 – due Wednesday

Show all work in order to get credit. <u>Textbook Summary page 431</u> Textbook Review page 468

Exercises # 1, 3, 9 – 12, 15 – 35 odd Exercises # 33, 35, 43 – 55 odd, 57 – 59