Maple 9.5 Interface Notes

* Each command in Maple must end with a semicolon (;) or a colon (2). Using the colon sy
when loading a package (e.g. with(plots):), or when saving a plot to a variable. .

. To enter multiple commands while suppressing evaluation, use <shift>-<Enter> between commands. When you’re réady to evaluate, press <Enter>.

® Todelete a line, try highlighting the line, then pressing <Delete>. If that doesn’t work, try <Ctrl>-<Delete>.

ppresses output. It’s usually a good idea to use the colon

® Ifyou want your input to be formatted in standard math notation click on

while the cursor is on the input line. In this mode You might find the
Expression Palette useful (click on View-Palettes-Expression Palette). ’
¢ The % symbol refers to the last result which Maple returned. %% refers to the result before the last. %%% goes back 3 results. Et ceteral
* . The constant (the ratio of a circle’s circumference divided by its diameter) can be entered by typing Pi (but not pi).
e The imaginary unit i, is entered in upper case: I
® The base e of the natural exponential function, e” | is easiest to define by entering e:=exp(1); {exp(x) returns e").
* The =sign is used for defining equations. It is not used to assign expressions to variables. So solve(x"2+5*x+6=0,x); uses the = sign in this way.
* To assign expressions to variables, use the := operator. For example, y: =x"2+5*x+6; stores x*2+5%+6 in the variable y.
® After assigning a value to a variable, the variable becomes a constant, and can no longer be used as an independent variable

or integrating. To delete a value stored in a variable, x, use unassign(‘x’); Note that x is surrounded by ‘apostrophes’.
® To create a function, there are two approaches: the first uses the syntax:

in plotting, differentiating,

dependent_varia'ble:=independenl“variable —> expression; Thus, to create f (x) =2x -3, you would enter fi=x —> 2%x — 3;
* The % operator (last result) cannot be used to define a function. If you need to use % to define a function, use the unapply command (see below).
¢ All functions and variables in Maple are Case Sensitive. So X is different from X, and it is possible to create functions like T().

¢ When computing odd indexed roots of negative numbers, Maple returns the principal root, which is imaginary. To get the real nth root of x, use

surd(x,n). So, if you want to plot y =]\/; > use plot(surd(x,3), x==-8..8); By the way, the archaic word surd means irrational number, or particularly,

radical.
Using Maple for Common Mathematical QOperations

Useful Maple Commands x*y; * is used for multiplication.
evalf(numerical-expression); approximates numerical-expression. x/y; / is used for division.

evalf(201); returns .2432902008 * 10”19 xMY; returns x”
eval(numerical-expression); evaluates a numerical-expression exactly. sqri(x); returns +/x .

eval(20!); returns 2432902008 176640000 :
eval(expression, x=value); substitutes value for x in expression. In(x); ' returns 1"(“") :
eval(expression, {x=valuel, y=valueZ, etc. ...}); performs multiple substitutions. Tog[b](x); returas logb(x)

eval(x"2-y, {x=7, y=2}); returns 47.
subs(x=a,expression) substitutes each x with an « in expression. exp(x); returns e

subs(sin(x)=y, sin(x)/(L-sin(x)Y\(1/2)); returns y/(1-y)(1/2). d returns J (real oots only)
assume(variable, domainl); restricts variable to values in domain. Sun (x,n) s vx . Y
additionally(variable,domain2); puts further restrictions on variable. sm()'(); €os(x); tan(x); . Frlgonomt;trnf: fuqutloﬂs

assume(t, real); forces ¢ o be a real number. arcsin(x); arccos(x); arctan(x); inverse trig functions

additionally(t,positive); forces to be positive in addition to being real. :
Maple assumes symbolic variables to be complex unless otherwise soecified. Certain operations (like the dot product) yield unexpected results if we torget
to tell Maple that our variables are real! Also, many operations are not valid over the set of all real numbers. So expand(in(a*b)); doesn’t expand unless we
exccute assume(a, positive); and assume(b, positive); first. Finally, whenever Maple outputs an expression in terms of a variable which has associated
assumptions, these variables will be displayed with a trailing tilde (so if is assumed positive, Maple will display +~). To turn this feature off, click File-
Preferences then click the /O Display tab, and under Assumed Variables, click on No Annotation. Click Apply to Session to save this sctting.
expand(expression); distributes expression completely.
expand((2*x-3)*(x-4)); returns 2*x 2-[| *x+12.
normal(expression); collects fractions, simplifies complex fractions, and reduces fractions.
normal(2/x+x/2); returns (4+x"2)/(2*x).
simplify(expression); uses many rules to find the “simplest” form for expression.
simplify(sqrt(S*sin(2"x)“2+5*cos(2*x)’\2)); returns sqrt(5);
collect(expression,variable); combines like terms with respect to variable.
Collect(a*x+2*a’*2*x+4*xAZ,x); returns (a+2*a™2)*x + 4*x"2.
factor(expression); attempts to factor expression over the rationals.
factor(expression.field); returns an approximate factorization over field.
factor(2*x"3-x"2-5*x+3); returns (xX"2+x-1)*(2*x-3).
factor(2*x"3-x"2-5*x+3 real); returns 2¥(x+1.6 l8033989)*(x-‘6180339887)*(x-LSOOOOOOOO).
factor(x"3+1,complex); returns (x+l.)*(x-A5000000000+,8660254038*[)*(x-.SOOOOOOOOO<.8660254038*1)
ifactor(integer); factors integer into a product of primes.
27101-1; returns 25353012004564588029934064 1075 1, and then, ifactor(%); returns (7432339208719)*(341117531003194129).
convert(expression, form); converts expression into an equivalent expression of type Sform.
The most uscful form is parfrac for partial fractions, e.g. convert(1/(x"2-4), parfrac, x);
'E=unapply(expression,variablcs); creates f, a function of variables. The main reason for using unapply over the previous method for
creating functions is that the % operator may be used here.
f:=unapply(x"2-4,x); g=unapply(x"2+y"2,x,y); h:=unapply(%,x);

solve(equation,variable); solves for variable in equation. .
When a solution of an equation is too messy or not exact, Maple will use the RootOf function to represent each of the
solutions. For example, solve(x 4+x"3+x/2+2*x+7 x); returns RootOf(_Z"4+_7"3+_Z~242* Z+7) which is the set of all
roots of the equation. To see the values use the function allvalues(%); to see all of the roots of the equation.
solve({equation list},{variable list}); solves a system of equations. o)
solve(incquality,variable); solves for variable in inequality.
solve(abs(x-4)>3,x); returns RealRange(Open(7),infinity), RealRange(-infinity,0Open(1)), which is Maple for ==, =NU(T,).
solve({inequality list},{variable list}); solves a system of inequalities. :
d , d? _ 9’
diff(f(x), x); computes Zx— f(x) > diff(f(x,y), x, x); computes e f(x) > diff(f(x, y), x, y); computes ™ f(x, y) .

int(f(x),x); computes If(x)dx » while int(f(x),x = a..b); computes ff(x)dx .
dotprod(v, w); computes the dot product of vectors v and w. The linear algebra package must be loaded first using: with(linalg):
norm(v, n); computes the nth norm (a.k.a magnitude) of vector v: norm(v, n) = HJZ v/ . Ifn is omitted the infinite norm is used

(where n—>). Of course, we need n =2 for the length of a vector in R2or R . The linear algebra package must be
loaded for this operation, do this by executing with(linalg):

limit(f{x),x=a); computes the limit of f{x) as x approaches a.

sum(f{i),i=m..n); computes the sum on /{i) as i ranges from m to n.

Two Dimensional Plots

plot(function, x=xmin..xmax, options); plots y = function with independent variable x ranging from xmin to xmax.
plot({x(1).y(1),t=tmin..tmax], options); plots a graph represented parametrically, with parameter t ranging from min to tmax.
plot({list of functions to plot} x=xmin. xmax,options), v

implicitplot(/{x.y)=0,x=xmin..xmax,y=ymin..ymax,options); plots equations where y is defined implicitly. Execute with(plots): first!
Allowable options include: (default options are printed in boldface).

axes = frame, boxed, normal, or none Sets the type of axes to display.
color = blue, black, red, etc.
discont = true or false Tells Maple to look for discontinuities on the graph.
labels =[x, y) Sets the names to display for the vertical & horizontal axes.
scaling = constrained or unconstrained Constrained scaling creates a 1:1 aspect ratio (circles look like circles — not ellipses).
title = “Title for your graph™ :
view = [xmin..xmax, ynin..ymax] Sets the coordinates of the corners of the view “window”.
coords = polar, cartesian - Sets the coordinate system.
Y = ymin..ymax Sets the max & min y-values for view “window”.
Examples:

plot(sin(x), x=-2*Pi..2*Pj, color = black, title="y = sin(x)”);

plot(1/x, x=-1..1, y=-2..2, discont = true);

plot([2*cos(t), 2*sin(t), t=-2*Pi..2*Pi}, view = [-3,3,-3,3], scaling = constgained);

plot({sin(x), 1/x, [2*cos(t), 2*sin(t), t=-2*Pi..2*Pi]}, x=-2*Pi..2*Pj, y=-3..3, scaling = constrained, color = black);
inequal(linear_inequality, x=xmin..xmax, y = ymin, ymax); Note: with(plots): must be executed first!
inequal({set of linear_inequalities}, x=xmin..xmax, ¥ = ymin..ymax), Note: with(plots): must be executed first!

inequal(x+2*y>1, x=-4.9,y=-5.4),

inequnl({x+2*y>l,x-y<6},x=~4.,9,y=-5..4);
Three Dimensional Plots
plot3d(fix,y), x = xmin..xmax, Y = ymin..ymax, options); plots z = f{x, y).
plot3d([x(u,v), y(u,v), z(u,v)] plots surface defined parametrically.
plot3d({list of functions of x & y}, x = xXmin..xmax, y = ymin..ymax, options); plots z = f(x, y).

If xmin and xmax are constants, then ymin and ymax may be functions of x. If ymin & ymax are constants, then xmin & xmax may be functions of y.
implicitplot3d(/x,y,z)=0, x = Xmin..xmax, y = ymin..ymax, z = zmin..zmax, options); where z is defined implicitly. Execute with(plots): first!
Allowable options for plot3d listed below- (default options are printed in boldface).

axes = boxed, normal, frame, none. | grid=[m, n}
color = red, blue, black, etc. labels =[x, y, z]
style = contour, point, hidden, patch, wireframe, scaling = constrained or unconstrained
patchnogrid, patchcontour, line. title = “title for plot”
contours = number of contours on a contour plot. view = [xmin..xmax, ymin..ymax, zmin..zmax)
coords = cartesian, cylindrical, spherical. (or view = zmin..zmax)
Examples: plot3d(4-(x"2+y"2), x=-2..2, y=-5qr(4-x"2)..sqrt(4-x"2), scaling = constrained, grid = [20,201);

plot3d([Sin(phi)‘cos'(thcta),sin(phi)*sin(thcta),cos(phi)], phi = 0..Pj, theta = 0..2*Pi, scaling = constrained);
To combine piats, store the plot in a variable, then use the display or display3d command to view them together. The display and display3d comimands are
in the plots package, so execute with(plots): first.
Example: with(plots): pl:=plot3d({sqrt(1-x"2), -sqri(1-x"2)), x=-1. L, y=x . x):
p2:=plot3d({sqrt(1-y"2), -sqri(1-y*2)}, x = Y.y,y=-1.1) display3d(pl, p2);

5(47«470/9 7[/><):><(osx N Xe[.//‘,/“j

> restart : with(plots) : with(plottools) :

N > a = x-cos(x) :
> b= plot(a, x =-Pi..Pi, color = blue, thickness=4) :
> display(b);

3 o

d = diff (a, x);

—
>
\{/

d = cos{x) — xsin(x))
> eqn:=d=0;
egn = cos(x) —xsin{x) =0 (2)
S“wb > solnl = fsolve(egn, x.-2..0) :
X *\,/0 > s0ln2 = fsolve(eqn, x,0.2) :
S\(> solnl, soln2;
¥ =0.8603335890, 0.8603333890 3)
e > eval(a,x=solnl);
Al‘j(, e ~0.5610963382)
Q”‘.w([> eval(a,x =soln2);
. A0 ks 0.5610963382)
|
[’a > g = plot(d, x =-Pi..Pi, color = red, thickness=2) :
=

, display(b, g);
by

Answers -

b) Domain: x e R

¢) Critical numbers: x ~ —0.86 and x ~ 0.86

d) - local minimum value is f(—0.86) =-0.56;
- local maximum value is f(0.86) =(.56;

- the function is decreasing on [—-7[, —0.86]U [0.86,72'] and increasing on [—0.86,0.86]

