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Sections 4.1 & 4.2 — Theorems

The Extreme Value Theorem (4.1)

This theorem gives conditions under which afunction is guaranteed to have extreme values.

Hypothesis:  f continuous on a closed interval [ a, b]

Conclusion:  f attains both an absolute maximum and an absolute minimumin [a, b] .

Examples of functions that satisfy the hypothesis: Example of afunction that does not satisfy
the hypothesis.
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Fermat’s Theorem ( The First Derivative Theorem for Local Extreme Values) (4.1)

This theorem says that a function’s derivative is always zero at an interior point where the function has aloca extreme
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Hypothesis.  f isafunction
cisaninterior point of the domain of f
f hasaloca minimum or maximum value at ¢

f§c) exists

Conclusion:  f¢{c)=0

Rolle’s Theorem(4.2)

This theorem says that between any two points where a differentiable function crosses a horizontal line thereis at least
one point on the curve where the tangent is horizontal.
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The Intermediate Value Theorem for Continuous Functions (2.6)

A function is said to have the Intermediate VValue Property if whenever it takes on two values, it takes on al the values
in between.

Hypothesis:  f continuous on a closed interval [ a, b]

Conclusion:  f tekeson every value between f (a) and f (b)
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The Mean Value Theorem (4.2)
This theorem saysthat if afunction is differentiable, then there is a point somewhere between A and B where the
tangent line is pardld to the secant line AB.

Hypothesis:  f continuous on a closed interval [ a, b]
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1.(41-#1-8)

Section 4.1 — Exercises

Find the extreme values and where they occur.
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2. (4.1 -#71)

3.(4.1- #69)

4.(4.1-#65)

What is the largest possible areafor aright triangle whose hypotenuse is 5 cm long?

One tower is 50 ft high and another is 30 ft high. The towers are 150 ft apart. A guy wireisto run
from point A to the top of each tower.

a) Locate point A so that the total length of guy wireis minimal.

Supertankers off-load oil at a docking facility 4 mi offshore. The nearest refinery is 9 mi east of the
shore point nearest the docking facility. A pipeline must be constructed connecting the docking facility
with the refinery. The pipeline costs $300,000 per mile if constructed underwater and $200,000 per
mile if overland.

a) Locate point B to minimize the cost of the construction.
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