Sections 4.1 & 4.2 – Theorems

The Extreme Value Theorem (4.1)

This theorem gives conditions under which a function is guaranteed to have extreme values.

Examples of functions that satisfy the hypothesis:

Example of a function that does not satisfy the hypothesis:

FIGURE 4.4 Even a single point of discontinuity can keep a function from having either a maximum or minimum value on a closed interval. The function

$$y = \begin{cases} x, & 0 \le x < 1\\ 0, & x = 1 \end{cases}$$

is continuous at every point of [0, 1]except x = 1, yet its graph over [0, 1]does not have a highest point.

Fermat's Theorem (The First Derivative Theorem for Local Extreme Values) (4.1)

This theorem says that a function's derivative is always zero at an interior point where the function has a local extreme value and the derivative is defined.

Rolle's Theorem(4.2)

This theorem says that between any two points where a differentiable function crosses a horizontal line there is at least one point on the curve where the tangent is horizontal.

Hypothesis: f continuous on [a,b] f differentiable on (a,b) f(a) = f(b)Conclusion: $\exists c \in (a,b)$ such that f'(c) = 0

FIGURE 4.10 Rolle's Theorem says that a differentiable curve has at least one horizontal tangent between any two points where it crosses a horizontal line. It may have just one (a), or it may have more (b).

The Intermediate Value Theorem for Continuous Functions (2.6)

A function is said to have the Intermediate Value Property if whenever it takes on two values, it takes on all the values in between.

The Mean Value Theorem (4.2)

This theorem says that if a function is differentiable, then there is a point somewhere between A and B where the tangent line is parallel to the secant line AB.

1. (4.1 - #1 - 8)

Find the extreme values and where they occur.

2. (4.1 - #71)

What is the largest possible area for a right triangle whose hypotenuse is 5 cm long?

3. (4.1 - # 68)

One tower is 50 ft high and another is 30 ft high. The towers are 150 ft apart. A guy wire is to run from point A to the top of each tower.

a) Locate point A so that the total length of guy wire is minimal.

- 4. (4.1 # 65) Supertankers off-load oil at a docking facility 4 mi offshore. The nearest refinery is 9 mi east of the shore point nearest the docking facility. A pipeline must be constructed connecting the docking facility with the refinery. The pipeline costs \$300,000 per mile if constructed underwater and \$200,000 per mile if overland.
 - a) Locate point B to minimize the cost of the construction.

