The Tangent Problem

Consider the problem of trying to find an equation of the tangent line  to a curve with equation
y=f (x) at a given point P. We can think of it as a line that touches the curve at P. Since we know that

the point P lies on the tangent line, we can find the equation of t if we know its slope m. The problem is
that we need two points to compute the slope and we know only one point, P, on 7. - :
To get around the problem we find an approximation to m by taking a nearby point Q on the curve and

computing the slope 71, of the secant line PQ.
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Now imagine that O moves along the curve toward P. We can see that the secant line rotates and
approaches the tangent line as its limiting position. This means that the slope 7 po ©of the secant line
becomes closer and closer to the slope of the tangent line. We write
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and we say that m is the limit of m po @s Q approaches P along the curve.

The tangent problem has given rise to the branch of calculus called differential calculus, which was not
invented until more than 2000 years after integral calculus. The main ideas behind differential calculus are
due to the French mathematician Pierre Fermat (1601 — 1665) and were developed by the English
mathematicians John Wallis (1616 — 1703), Isaac Barrow (1630 — 1677), and Isaac Newton (1642 — 1727)
and the German mathematician Gottfried Leibniz (1646 — 1716).

The two branches of calculus and their chief problems, the area problem and the tangent problem, appear
to be very different, but it turn out that there is a very close connection between them. The tangent
problem and the area problem are inverse problems in a sense that will be described in Chapter 5.



Velocity

When we look at the speedometer of a car and read that the car is traveling at 48 mi/h, what does that
information indicate to us? We know that if the Velocity remains constant, then after an hour we will have

traveled 48 mi. But if the velocity of the car varies, what does it mean to say that the velocity at a given
instant is 48 mi/h?

In order to analyze this question, let’s examine the motion of a car that travels along a stralght road and
assume that we can measure the distance traveled by the car (in feet) at 1-second intervals as in the
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Let’s calculate the average velocity in time intervals [2 t] for different values of r.
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Let’s imagine that the distance traveled has been measured at 0.1-second time intervals as in the following
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The average velocities over successively smaller intervals appear to be getting closer to
awrwhe{ wead 1O, and we expect that the velocity at exactly t =2 isabout 0O ‘{-‘4“/ S

We will define instantaneous velocity of a moving object as the limiting value of the average velocities
over smaller and smaller time intervals.

If we write d = f(¢), then f(r)is the number of feet traveled after ¢ seconds. The average velocity in the

time interval [2.1] is
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The velocity v when 1 =2 is the limiting value of this average velocity as ¢ approaches 2; that is,
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Thus, when we solve the tangent problem in differential calculus, we are also solving problems
concerning velocities. The same technique also enables us to solve problems involving rates of change in
all of the natural and social sciences.
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Study Examples 1 through 4 in Section 2.1 .

Sir Isaac Newton invented his version of calculus to explain the motion of the planets around the Sun.
Today calculus is used in :
o Calculating the orbits of satellites and spacecraft
Predicting population sizes
Estimating how fast coffee prices rise
Forecasting weather
Measuring the cardiac output of the heart
Calculating life insurance premiums
A great variety of other areas
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Here is a list of some of the questions that you will be able to answer using calculus:
o How can we explain the shapes of cans on supermarket shelves?
o Where is the best place to sit in a movie theater?
o How far away from an airport, should a pilot start descent? ‘
o Where should an infielder position himself to catch a baseball thrown by an outfielder and relay it
to home plate?

o Does a ball thrown upward take longer to reach its maximum height or to fall back to its original
height?



