Sections 4.3 & 4.4 Logarithmic Functions and Properties of Logarithms Sections 4.4 & 4.5 Exponential and Logarithmic Equations and Their Applications

- 1) Find the following:
 - a) $\log_3 27$
- b) $\log_4 \frac{1}{16}$
- c) $\log_{1/2} 8$

d) $\log_2 \sqrt{2}$

- e) $\log_2(\log_4 16)$ f) $\log(\ln e)$
- g) $\log(\log_3(\log_5 125))$ h) $\log 70 \log 7$

i) $2^{\log_2 5} - 3\log_5 \sqrt[3]{5}$

- j) $\frac{\log_3 81 \log_p 1}{\log_{2.5} 8 \log 0.001}$ k) $(\log_2 10)(\log 2)$

- 1) $5e^{\ln(A^2)}$
- m) $\ln\left(e^{2ab}\right)$
- 2) Expand as much as possible. Simplify the result if possible. Assume all variables represent positive real numbers
- a) $\log_3 \frac{4p}{q}$ b) $\log_5 \frac{5\sqrt{7}}{3}$ c) $\log_6 (7m + 3q)$
- d) $\log_m \sqrt{\frac{5r^3}{5^5}}$

- e) $\log_3 \frac{\sqrt{x} \cdot \sqrt[3]{y}}{w^2 \sqrt{z}}$ f) $\ln \frac{5x\sqrt{1+3x}}{(x-4)^3}$
- 3) Write as a single logarithm with coefficient 1. Assume all variables represent positive real numbers
 - a) $\log_a x + \log_a y \log_a m$

- b) $2\log_{m} a 3\log_{m} b^{2}$
- c) $\log_b (2y+5) \frac{1}{2} \log_b (y+3)$
- 4) Graph the following functions using transformations. Find domain, range, exact intercepts, asymptote, and inverse for each function.
 - a) $f(x) = -\log_2(x-2) + 1$

- b) $f(x) = 3^{x-1} 2$ c) $f(x) = e^{x+1} 4$

- d) $f(x) = \ln(x+3) 1$
- 5) Find the domain of each function:

 - a) $f(x) = \ln(2x+1)$ b) $f(x) = \log_3(x-7)^2$ c) $f(x) = \log(16-x^2)$

- 6) Solve for *x*.

- a) $10^x = 25$ b) $10^{x^2} = 40$ c) $\log_x 1 = 0$ d) $\log_x \sqrt[3]{5} = \frac{1}{2}$

- e) $10^{x+3} = 5e^{7-x}$ f) $2e^{3x} = 4e^{5x}$ g) $2x 1 = e^{\ln x^2}$ h) $9^x = 2e^{x^2}$

- i) $5^x = 3^{2x-1}$ k) $3^{x^2-4} = 27$ l) $\log_8(x+5) \log_8 2 = 1$
- m) $10^{2x} + 3(10^x) 10 = 0$

- n) $\log_{2}(\log_{2} x) = -1$ o) $e^{x} e^{-x} = 1$
- p) $\ln(-x) + \ln 3 = \ln(2x 15)$
- r) $\ln 5x \ln (2x 1) = \ln 4$

- s) $\log x = \sqrt{\log x}$ t) $5(1.2)^{3x-2} + 1 = 7$ v) $\log_2 x \frac{\log_2 2}{\log_2 x} = 0$

7) Solve for the indicated variable.

a)
$$r = p - k \ln t$$
, for t

a)
$$r = p - k \ln t$$
, for t b) $T = T_0 + (T_1 - T_0) 10^{-kt}$, for t c) $y = \frac{k}{1 + ae^{-bx}}$, for b

c)
$$y = \frac{k}{1 + ae^{-bx}}$$
, for 1

d)
$$m = 6 - 2.5 \log (M / M_0)$$
, for M e) $\log A = \log B - C \log x$, for A

e)
$$\log A = \log B - C \log x$$
, for A

f)
$$P = P_0 e^{kt}$$
, for t

g)
$$ae^{kt} = e^{bt}$$
, where $k \neq b$; solve for

f)
$$P = P_0 e^{kt}$$
, for t g) $ae^{kt} = e^{bt}$, where $k \neq b$; solve for t h) $I = \frac{E}{R} \left(1 - e^{-\frac{Rt}{2}} \right)$, for t

8) Convert the functions into the form $P = P_0 a^t$. Which represent exponential growth and which represent exponential decay?

a)
$$P = 2e^{-0.5t}$$

a)
$$P = 2e^{-0.5t}$$
 b) $P = 15e^{0.25t}$

9) Convert the functions into the form $P = P_0 e^{kt}$.

a)
$$P = 15(1.5)^t$$

a)
$$P = 15(1.5)^t$$
 b) $P = 4(0.55)^t$

Note: $P = P_0 e^{kt}$ models exponential growth (k>0) or decay (k<0).

k = growth constant

 P_0 = initial population

10) Find the inverse of each function.

a)
$$f(t) = 50e^{0.1t}$$
. b) $f(t) = 1 + \ln t$.

b)
$$f(t)=1+\ln t$$
.

- 11) The air in a factory is being filtered so that the quantity of pollutant, P (measured in mg/liter) is decreasing according to the equation $P = P_0 e^{-kt}$, where t represents time in hours. If 10% of the pollution is removed in the first five hours:
 - a) What percentage of the pollution is left after 10 hours?
 - b) How long will it take before the pollution is reduced by 50%?
- 12) If the size of a bacteria colony doubles in 5 hours, how long will it take for the number of bacteria to triple?
- 13) Suppose a certain radioactive substance has a half-life of 5 years. An object starts with 20 kg of the radioactive material.
 - a) How much of the radioactive material is left after 10 years?
 - b) The object can be moved safely when the quantity of the radioactive material is 0.1 kg or less. How much time must pass before the object can be moved?
- 14) The number of bacteria present in a culture after t hours is given by the formula $N = 1000e^{0.69t}$.
 - a) How many bacteria will be there after ½ hour?
 - b) How long will it be before there are 1,000,000 bacteria?
 - c) What is the doubling time?
- 15) You place \$800 in an account that earns 4% annual interest, compounded annually. How long will it be until you have \$2000
- 16) At the World Championship races held at Rome's Olympic Stadium in 1987, American sprinter Carl Lewis ran the 100-m race in 9.86 sec. His speed in meters per second after t seconds is closely modeled by the function

defined by
$$f(t) = 11.65 \left(1 - e^{-\frac{t}{1.27}} \right)$$
.

- a) How fast was he running as he crossed the finish line?
- b) After how many seconds was he running at the rate of 10 m per sec?

- 17) As age increases, so does the likelihood of coronary heart disease (CHD). The fraction of people x years old with some CHD is modeled by $f(x) = \frac{0.9}{1 + 271e^{-0.122x}}$.
 - a) Evaluate f(25), f(65). Interpret the results.
 - b) At what age does this likelihood equal 50%?
- 18) Find the doubling time of an investment earning 2.5% interest if interest is compounded continuously.
- 19) In 2000 India's population reached 1 billion, and in 2025 it is projected to be 1.4 billion.
 - a) Find values for P_0 and a so that $f(x) = P_0 a^{x-2000}$ models the population of India in year x.
 - b) Estimate India's population in 2010.
 - c) When will India's population might reach 1.5 billion?
- 20) Assume the cost of a loaf of bread is \$4. With continuous compounding, find the time it would take for the cost to triple at an annual inflation rate of 6%.

Answers:

- 1) a) 3; b) -2; c) -3; d) $\frac{1}{2}$; e) 1; f) 0; g) 0; h) 1; i) 4; j) $\frac{4}{5}$; k) 1; l) $5A^2$; m) 2ab
- 2) c)cannot be simplified; d) $\frac{1}{2} (\log_m 5 + \log_m r 5\log_m z)$; e) $\frac{1}{2} \log_3 x + \frac{1}{3} \log_3 y 2\log_3 w \frac{1}{2} \log_3 z$;
- f) $\ln 5 + \ln x + \frac{1}{2} \ln (1 + 3x) 3 \ln (x 4)$
- 3) a) $\log_a \frac{xy}{m}$; b) $\log_m \frac{a^2}{b^6}$; c) $\log_b \frac{2y+5}{\sqrt{y+3}}$
- **4)** a) $f^{-1}(x) = 3^{1-x} + 2$; b) $f^{-1}(x) = 1 + \log_3(x+2)$; c) $f^{-1}(x) = \ln(x+4) 1$; d) $f^{-1}(x) = e^{x+1} 3$
- 5) a) x > -1/2; b) $x \neq 7$; c) (-4,4)
- 6) a) $\log 25$; b) $\pm \sqrt{\log 40}$; c) $x > 0, x \ne 1$; d) 5; e) 0.515; f) -0.347; g)1; h) 1.81, 0.38; j) $\frac{\log_5 3}{2\log_5 3 1}$;
- k) $\pm\sqrt{7}$; l)11; m) log2; n) $\sqrt{3}$; o) ln $\frac{1+\sqrt{5}}{2}$; p) \varnothing ; r) 4/3; s) 1, 10; t) 1; u) $\sqrt{3}$; v) 2, 1/2
- 7) a) $e^{(p-r)/k}$; b) $-\frac{1}{k} \log \left(\frac{T T_0}{T_0 T_0} \right)$; c) $\frac{\ln \left((k y)/(ay) \right)}{-r}$; d) $M_0 \cdot 10^{(6-m)/2.5}$; e) $\frac{B}{r^C}$; f) $\ln \left(P/P_0 \right)/k$;
- g) $\frac{\ln a}{h-k}$; h) $-\frac{2}{R}\ln\left(1-\frac{RI}{E}\right)$
- **8**) a) $P = 2(0.61)^t$; decay; b) $P = 15(1.284)^t$ growth;

- **9)** a) $P = 15e^{0.41t}$; b) $P = 4e^{-0.6t}$
- **10**) a) $f^{-1}(t) = 10 \ln\left(\frac{t}{50}\right)$; b) $f^{-1}(t) = e^{t-1}$; **11**) a) 81%; b) 33 hours; **13**) a) 5 kg; b) 38.2 years; **14**) a) 1412 bacteria; b) 10 hours; c) 1 hour; 12) 7.925 hours;
- **15**) 23.4 years
- **16**) a) 11.6451 m per sec; b) 2.4823 sec **17**) a) 0.065; 0.82; b) about 48 years. **18**) about 27.73 years
- **19**) a) 1 and a=1.01355; b) about 1.14 billion; c) 2030; **20**) 18.3 yr.