VERTICAL SHIFTING (TRANSLATION)

x	$f(x) = x^2$	$g\left(x\right) = x^2 + 1$	$h(x) = x^2 - 2$
-2			
-1			
0			
1			
2			

VERTICAL SHIFTING : A vertical shifting does not change the shape of the graph but simply translates it to another position in the plane.

Equation	How to obtain the graph	Example
y = f(x) + k $k > 0$	Shift graph of $y = f(x)$ upward k units.	$g(x) = x^2 + 1$
y = f(x) - k $k > 0$	Shift graph of $y = f(x)$ downward k units.	$h(x) = x^2 - 2$

HORIZONTAL SHIFTING (TRANSLATION)

Example #2

Use the graph of $f(x) = x^2$ to obtain the graphs of $g(x) = (x-1)^2$ and $h(x) = (x+1)^2$.

x	$f(x) = x^2$	$g(x) = (x-1)^2$	$h(x) = (x+1)^2$
-2			
-1			
0			
1			
2			

HORIZONTAL SHIFTING : A horizontal shifting doesn't change the shape of the graph but simply translates it to another position in the plane.

Equation	How to obtain the graph	Example
y = f(x-h) $h > 0$	Shift graph of $y = f(x)$ to the right <i>h</i> units.	$g\left(x\right) = \left(x-1\right)^2$
y = f(x+h) $h > 0$	Shift graph of $y = f(x)$ to the left <i>h</i> units.	$h(x) = (x+1)^2$

VERTICAL STRETCH AND COMPRESSION

x	f(x) = x	g(x) = 2 x	$h(x) = \frac{1}{2} x $
-2			
-1			
0			
1			
2			

VERTICAL STRETCH AND COMPRESSION

Equation	How to obtain the graph	Example
y = af(x) $a > 1$	Stretch the graph of $y = f(x)$ vertically by a factor of <i>a</i> .	g(x) = 2 x
y = af(x) $0 < a < 1$	Compress the graph of $y = f(x)$ vertically by a factor of $\frac{1}{a}$.	$h(x) = \frac{1}{2} x $

HORIZONTAL COMPRESSION AND STRETCH

x	$f(x) = \sqrt{x}$	$g(x) = \sqrt{2x}$	$h(x) = \sqrt{\frac{1}{2}x}$
0			
1			
4			
9			

Equation	How to obtain the graph	Example
y = f(ax) $a > 1$	Compress the graph of $y = f(x)$ horizontally by a factor of <i>a</i> .	$g(x) = \sqrt{2x}$
y = f(ax) $0 < a < 1$	Stretch the graph of $y = f(x)$ horizontally by a factor of $\frac{1}{a}$.	$h(x) = \sqrt{\frac{1}{2}x}$

REFLECTION ABOUT THE AXES

x	$f(x) = \sqrt{x}$	$g(x) = -\sqrt{x}$	$h(x) = \sqrt{-x}$
-4			
-1			
0			
1			
4			

REFLECTION ABOUT THE AXES

Equation	How to obtain the graph	Example
y = -f(x)	Reflect the graph of $y = f(x)$ about the x-axis.	$g(x) = -\sqrt{x}$
y = f(-x)	Reflect the graph of $y = f(x)$ about the y-axis.	$h(x) = \sqrt{-x}$

Exercise #5 Suppose the point (8,12) is on the graph of y = f(x). Find a point on the graph of each function.

a)
$$y = f(x+4)$$
 c) $y = \frac{1}{4}f(x)$

b)
$$y = f(x) + 4$$
 d) $y = 4f(x)$

7

Exercise #6 Graph each function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function and show all steps (equations and meaning).

a)
$$f(x) = 2(x-2)^2 - 4$$

b) $g(x) = -|x+3| + 2$
c) $h(x) = 3\sqrt{-x+2} - 1$

More piecewise-defined functions (2.7)

Exercise #7 Let
$$f(x) = \begin{cases} \sqrt{x+4}, & \text{if } -4 \le x \le 0 \\ |x-2|, & \text{if } 0 < x \le 7 \\ 1, & \text{if } x > 7 \end{cases}$$
 a piecewise-defined function

- a. Graph the function.
- b. Identify the domain and range.
- c. Identify the intervals on which the function is increasing, decreasing, constant.

Exercise #8 Let
$$f(x) = \begin{cases} -(x-1)^2 + 5, & \text{if } -1 < x \le 4 \\ 2x - 12, & \text{if } x > 4 \end{cases}$$
 a piecewise-defined function

- d. Graph the function.
- e. Identify the domain and range.
- f. Identify the intervals on which the function is increasing, decreasing, constant.