QUIZ #2 @ 50 points

Write in a neat and organized fashion. Write your complete solutions on SEPARATE PAPER. You should use a pencil. For an exercise to be complete there needs to be a detailed solution to the problem. Do not just write down an answer. No proof, no credit given! Clearly label each exercise.

1. If $f(x) = x^2 - 2x + 3$, find (and simplify): f(a+h) - f(a).

2. Factor each polynomial completely:

 $15m^3 - 25m^2 + 10m$ a)

b)
$$x^2 - 12x + 20$$

c)
$$a^3 + 8b^3$$

d)
$$2x^{n+2} - 5x^{n+1} + 3x^n$$

3. Solve each equation by factoring:

a)
$$2x^2 - 8x = 90$$

b)
$$(x-3)(x+8) = -30$$

c)
$$3x^4 - 48x^2 = 0$$

d)
$$2(3x-2)\left(2x+\frac{1}{5}\right)\left(x^2-7x\right)=0$$

e) $\frac{1}{2}x^2+\frac{3}{5}x=0$

A baseball is thrown straight up from a rooftop 448 feet high. The function 4. s(

$$(t) = -16t^2 + 48t + 448$$

describes the ball's height above the ground, s(t), in feet, t seconds after it is thrown.

- a) What is s(0) and what is the meaning in the context of the problem?
- b) How long will it take for the ball to hit the ground?

4) (a) UDX = 0(a) $\sin^{-1}\left(\frac{-1}{2}\right) = \frac{1}{6}$ $X = \frac{7}{2} + 2kq$ OR $X = \frac{3}{7} + 2kq$, KEZ and # e [-12, 2] $(OR \quad X = \frac{\pi}{2} + K_{\overline{1}})$ (b) sinx = 0 (b) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \begin{vmatrix} \frac{\pi}{6} \end{vmatrix}$ X= KJ, KEZ b/c cos I V3 and $\overline{I} \in [0, \overline{I}]$ C taux=0 itd $(c) + au'(-\sqrt{3}) = \begin{vmatrix} -\sqrt{7} \\ -\sqrt{3} \end{vmatrix}$ iff sinx=0 $\frac{SINX}{COSX} = 0$ 177 X= KT 1/e tau (-"3)= - V3 KEZ and -] e (-],]) $\cot x = 0$ iff (d)(d) $\cos'(\cos\frac{\pi}{4}) \neq \frac{\pi}{4}$ $\frac{\cos x}{\sin x} = 0 \quad \text{iff} \quad \cos x = 0$ -€/c = € [0,1]] But, $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} X = & \overline{U} + 2k \end{array} \\ \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} X = & \frac{3}{2} \end{array} \\ \end{array} \\ \end{array} + & 2k \end{array} \\ \end{array}$ ĪΙ¥ $\cos\left(\frac{7}{4}\right) = \cos \frac{7}{4}$ KER Thereps, $cos'(cos \frac{77}{4}) = cos'(cos \frac{77}{4})$ 5 Recell that \sin' : $[-1,1] \rightarrow [-\frac{1}{2}, \frac{1}{2}]$ $(z) \sin\left(\sin^{-1}\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}$ 100⁻¹: [-1,1] → [0,1] $(\neq) \sin(\cos^2 2)$ $fau': \mathbb{R} \longrightarrow \left(\begin{array}{c} -\overline{l}_{2}, \overline{l}_{2} \end{array} \right)$ Method I Sin(cos'z) = I 14 13 14 14 115 V2/2 $= \sin \left(\frac{\pi}{3} \right)$ sin V2/2 1 ¥3/2 V3 √3

TEST #2 @ 150 points

Solve the problems on separate paper. Clearly label the problems. Show all steps in order to get credit. No proof, no credit given

1. Graph $f(x) = \sin x$ and $f^{-1}(x) = \sin^{-1}(x)$ on the same coordinate system, showing the relation between the two graphs (symmetry about the line y = x). Answer the following questions:

a) What is the domain and range of $f(x) = \sin x$?

b) What is the domain and range of $f^{-1}(x) = \sin^{-1}(x)$?

2. a) Graph $y = 1 + 3\sin(2x)$ between 0 and 2π . Identify the <u>amplitude and period and label the axes</u> accurately.

b) Find the x-intercepts of the graph within the period graphed; that is, solve the equation y = 0 in $[0, 2\pi]$. Give exact answers as well as approximations.

3. Graph $y = \frac{3}{4}\cos\left(2x + \frac{2\pi}{3}\right)$ over one period. Identify the <u>amplitude</u>, <u>period</u>, <u>and phase shift and label the</u> axes accurately.

4. Find all real numbers x that satisfy each equation. Justify your answers.

a) cos x = 0
b) sin x = 0
c) tan x = 0
d) cot x = 0

5. Evaluate the following. Give exact answers whenever possible.

a)
$$\sin^{-1}\left(-\frac{1}{2}\right)$$

b) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$
c) $\tan^{-1}\left(-\sqrt{3}\right)$
d) $\cos^{-1}\left(\cos\frac{7\pi}{4}\right)$
e) $\sin\left(\sin^{-1}\frac{\sqrt{2}}{2}\right)$
f) $\sin\left(\cos^{-1}\frac{1}{2}\right)$