QUIZ #1 @ 85 points

Write neatly. Show all work. Write all responses on separate paper. Please write only on one side and clearly label the exercises.

1) Solve the following equation by the zero-factor property (by factoring):	$x^2 - 5x + 6 = 0$
2) Solve the following equation by the square root property. Give exact answers.	$2-5(x+1)^2 = 18$
3) Solve the following equation by completing the square. Give exact answers.	$3x^2 - 5x - 1 = 0$
4) Solve the following equation by the quadratic formula. Give exact answers.	$3 - \frac{4}{x} - \frac{2}{x^2} = 0$
5) Solve the following equation. Write any restrictions that might apply.	$\frac{2x-5}{x} = \frac{x-2}{3}$
6) Solve the following equation. Make sure to check the solutions.	$\sqrt{x} - \sqrt{x - 12} = 2$
7) Solve the following inequality. Write the solution set in interval notation.	$x^2 - x - 6 > 0$
8) Solve the following inequality. Write the solution set in interval notation.	$\frac{x+1}{x-4} > 0$
2x-5	

9)
$$f(x) = x^2 - 2x + 5$$
, $g(x) = \frac{2x - 5}{x + 1}$. Find the following:

- a) The domain of f and g.
- b) Find f(-x), f(a+h), and g(2x).

10) Suppose $v(t) = -t^2 + 3t$ gives the velocity, in ft/sec, of an object at time t, in seconds.

- a) Is *v* a function of *t*? Explain.
- b) Which variable is independent and which one is dependent?
- c) What is v(0) and what does it represent?
- d) What is v(1) and what does it represent?

11477 130 Quit # 1- Solutions $\chi^2 - \frac{5}{3}\chi + \frac{25}{36} = \frac{7}{3} + \frac{25}{36}$ $(1) \quad \chi^2 - 5x + 6 = 0$ Solve by foctoring (x-2)(x-3) = 0 $\left(X - \frac{5}{6}\right)^2 = \frac{37}{36}$ x - 2 = 0 OR x - 3 = 0x = 2 x = 3 $\sqrt{(x-\frac{5}{2})^2} = \sqrt{\frac{37}{36}}$ XE 52,33 $X - \frac{5}{2} = \frac{1}{2} + \frac{\sqrt{37}}{C}$ Dolve by squar root $X = \frac{5 \pm \sqrt{37}}{\sqrt{37}}$ more.ty: $2-5(x-1)^2 = 18$ (4) folte by quodratic formula $2 - 18 = 5(X - 1)^2$ $(X-1)^2 = -\frac{16}{5}$ $3 - \frac{4}{x} - \frac{2}{x^2} = 0 / x^2$ $\sqrt{x-1}^2 = \sqrt{-16}$ Xto $3\chi^2 - 4\chi - 2 = 0$ $x = \frac{-6 \pm \sqrt{6^2 - 4ac}}{c = -2}$ $X - I = \frac{1}{2} \frac{4I}{VE}$ X=1+ 415 i $X = \frac{4 + \sqrt{16 - 4(3)(-2)}}{z(3)}$ (3) Solve by completing the square: / $x = \frac{4 \pm \sqrt{40}}{1} = \frac{4 \pm 2\sqrt{10}}{1}$ $3x^2 - 5x - 1 = 0$ = 2(2+10) 3x2-5x=1 /= 3 x- ジメ= j $X = \frac{27\sqrt{10}}{3}$ $\left(\frac{1}{2} \cos \beta \cdot \mathbf{x}\right)^2 = \left(\frac{1}{2} \cdot \frac{\pi}{5}\right)^2 = \frac{27}{36}$

(f) $\frac{2X-5}{x} = \frac{X-2}{3}$ condition: X = 0 3(2X-5) = X(X-2) $6y - 15 = x^2 - 2x$ $x^2 - 8x + 15 = 0$ (X-3)(X-5)=0X-3=0 OR X-5=0 X=3 X=5 XE \$3,53 6) $\sqrt{x} - \sqrt{x - 12} = 2$, 2 $\sqrt{x} - 2 = \sqrt{x - 12}$ $(\sqrt{x}-z)^2 = (\sqrt{x}-1z)^2$ X-41x+4= x=12 -41x = -16 $\sqrt{x} = 4$ $\left(\int_{X}\right)^{\frac{2}{2}} \mathcal{Y}^{2}$ X = 16 Chech: V16-V16-12 = 2 4-2=2 true XE 5163 |

7) x2-x-6>0 $ert y = x^2 - x - 6$ The groot of y = x²-X-6 is a porabola that opus up wards 1 $X - \Omega: x^2 - X - 6 = 0$ (x-3)(x+2)=0x=3, X=-2There por, x2-x-6>0 $|\frac{14}{x \in (-\infty, -2)} \cup (3, -2)|$ $\binom{8}{x+1} \xrightarrow{x+1} = 70$ $\frac{X - A -1 4 B}{X + 1 - - 0 + + +}$ $\frac{X + 1 - - 0 + + +}{X - 4 - - 1 + + +}$ $\frac{X+1}{X-Y} + 0 - 1 + 0$ $\frac{X+1}{X-Y} > 0 \quad iff = \frac{1}{|X \in (-\infty, -1)U(4, \infty)|}$

(b) t= uidependeut v(t) = de puideut (9) $f(x) = x^2 - 2x + 5$ $g(x) = \frac{2x-3}{x+1}$ (a) $v(0) = -0^2 + 3/0$ v(0) = 0 + 1/4c(a) Omiain J J: XEIR! Condition: x+1=0 initial velocity Domain of g $(d) v(1) = -1^2 + 3(1)$ $X \in \mathcal{R} \setminus \{-1\}$ v(1) = 2 #/ 4c the velocity of the object after sound (b) $f(-x) = (-x)^2 - 2(-x) + 5$ $= x^{2} + 2x + 5$ $f(a+h) = (a+h)^2 - 2(a+h) + 5$ $= a^2 + 2ah + h^2 - 2a - 2h + 5$ $g(2x) = \frac{2(2x)-5}{2x+1} = \frac{4x-5}{2x+1}$ $(h) v(t) = -t^2 + 3t$ t=time (mixc), W-relocity (Ht/fre) Decouse por every t, there is only one V